Characterization of RanBPM Molecular Determinants that Control Its Subcellular Localization
نویسندگان
چکیده
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding.
منابع مشابه
Molecular Characterization of the Epstein-Barr Virus BGLF2 Gene, its Expression, and Subcellular Localization
Background: Epstein–Barr virus (EBV) is a universal herpes virus which can cause a life-long and largely asymptomatic infection in the human population. However, the exact pathogenesis of the EBV infection is not well known.Objective: A comprehensive bioinformatics prediction was carried out for investigating the molecular properties of the BGLF2 and to a...
متن کاملEvidence for an association between Wnt-independent -catenin intracellular localization and ovarian apoptotic events in normal and PCO-induced rat ovary
The association of secreted frizzled related protein type 4 (Sfrp4) as an antagonist of Wnt mole-cules in apoptotic events has been reported previously. Moreover, its increased expression has been reported in the ovary of women with polycystic ovary (PCO). We have demonstrated in-creased Sfrp4 in PCO-induced rat ovary related to an increased number of apoptotic follicles showing nuclear ?cateni...
متن کاملNovel role of the muskelin–RanBP9 complex as a nucleocytoplasmic mediator of cell morphology regulation
The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and th...
متن کاملMolecular Phylogeny of a RING E3 Ubiquitin Ligase, Conserved in Eukaryotic Cells and Dominated by Homologous Components, the Muskelin/RanBPM/CTLH Complex
Ubiquitination is an essential post-translational modification that regulates signalling and protein turnover in eukaryotic cells. Specificity of ubiquitination is driven by ubiquitin E3 ligases, many of which remain poorly understood. One such is the mammalian muskelin/RanBP9/CTLH complex that includes eight proteins, five of which (RanBP9/RanBPM, TWA1, MAEA, Rmnd5 and muskelin), share strikin...
متن کاملWhen Overexpressed, a Novel Centrosomal Protein, RanBPM, Causes Ectopic Microtubule Nucleation Similar to γ-Tubulin
A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-terminal half of which is 30% identical to RanBPM. Anti-RanBPM antibodies revealed that RanBPM was local...
متن کامل